Research on Water-Level Recognition Method Based on Image Processing and Convolutional Neural Networks

نویسندگان

چکیده

Water level dynamics in catchment-scale rivers is an important factor for surface water studies. Manual measurement highly accurate but inefficient. Using automatic sensors has disadvantages such as high cost and difficult maintenance. In this study, a recognition method based on digital image processing technology CNN proposed. For achieving batch segmentation of source images, the coordinates ruler region characters’ scale lines’ are obtained by using algorithms grayscale processing, edge detection, tilt correction Hough-transform morphological operations. The then used to identify value characters. Finally, calculated according mathematical relationship between number lines detected pixel traversal binarized This levels images collected Hulu watershed Qilian Mountains Northwest China. results show that accuracy compared with actual measured reached 94.6% improved nearly 24% template matching algorithm. With accuracy, low cost, easy deployment maintenance, can be applied monitoring mountainous rivers, providing effective tool hydrology research resources management.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gait Recognition Based on Convolutional Neural Networks

In this work we investigate the problem of people recognition by their gait. For this task, we implement deep learning approach using the optical flow as the main source of motion information and combine neural feature extraction with the additional embedding of descriptors for representation improvement. In order to find the best heuristics, we compare several deep neural network architectures...

متن کامل

Using Convolutional Neural Networks for Image Recognition

A neural network is a system of interconnected artificial “neurons” that exchange messages between each other. The connections have numeric weights that are tuned during the training process, so that a properly trained network will respond correctly when presented with an image or pattern to recognize. The network consists of multiple layers of feature-detecting “neurons”. Each layer has many n...

متن کامل

Cystoscopy Image Classication Using Deep Convolutional Neural Networks

In the past three decades, the use of smart methods in medical diagnostic systems has attractedthe attention of many researchers. However, no smart activity has been provided in the eld ofmedical image processing for diagnosis of bladder cancer through cystoscopy images despite the highprevalence in the world. In this paper, two well-known convolutional neural networks (CNNs) ...

متن کامل

Image Forgery Localization Based on Multi-Scale Convolutional Neural Networks

In this paper, we propose to use Multi-Scale Convolutional Neural Networks (CNNs) to conduct forgery localization in digital image forensics. A unified CNN architecture for input sliding windows of different scales is designed. Then, we elaborately design the training procedures of CNNs on sampled training patches in the IEEE IFS-TC Image Forensics Challenge training images. With a set of caref...

متن کامل

Noisy Ocular Recognition Based on Three Convolutional Neural Networks

In recent years, the iris recognition system has been gaining increasing acceptance for applications such as access control and smartphone security. When the images of the iris are obtained under unconstrained conditions, an issue of undermined quality is caused by optical and motion blur, off-angle view (the user's eyes looking somewhere else, not into the front of the camera), specular reflec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Water

سال: 2022

ISSN: ['2073-4441']

DOI: https://doi.org/10.3390/w14121890